Increasing output & reducing waste of drug repurposing trials
Thanks to strong drug candidates and efficient designs

Gauthier Bouche, MD, MPH
Director of Clinical Research @ the Anticancer Fund, Brussels, Belgium

Morningside CIAM conference on drug repurposing – 15 Nov 2019
Why did the Anticancer Fund decide to invest in drug repurposing?
Rationale for **drug repurposing**

- The list of *secondary uses* is long
- 39 drugs repurposed in pediatric hemato-oncology (*Blatt 2013 Drug Discov Today*)

![Timeline]

- 29 new drugs approved by FDA
- 143 new uses in MicroMedex

1998 → **2003**

- DeMonaco & Von Hippel 2006 *Pharmacotherapy*

- Note to self (& others): quantifying the proportion of FDA/EMA approved drugs that found secondary uses after approval would give a great service.
Introducing the drug toolbox

- Toolbox is large: > 2000 drugs approved (+ ≈ 30 new each year)
- Tools have multiple functions = polypharmacology (Mestres 2008 Nat Biotech, Klaeger 2018 Science), even for mAb (Fornoni 2011 STM, Bogdanovich 2015 Signal Transduct Target Ther)
- Science sheds new light on diseases & drugs → new ways of tinkering

Lin 2019 STM
Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials
Rationale for investing in drug repurposing in oncology

Successes across the drug repurposing spectrum in oncology

- **Zoledronic acid**
 From osteoporosis to bone metastasis

- **Imatinib**
 From CML to GIST

- **Pembrolizumab**
 From melanoma to MSI tumors

- **Trastuzumab**
 From breast to eso-gastric junction cancers

- **(Docetaxel)?**
 From hormone-refractory to hormone-sensitive prostate cancer

- **Glucocorticoids**
 From anti-inflammatory to cytotoxics

- **Thalidomide**
 Long eventful way to multiple myeloma

- **BCG**
 From TB to bladder cancer

Hard repurposing

Soft repurposing
Rationale for investing in drug repurposing in oncology as a (rather small) foundation

- As a rather small foundation, off-patent drugs are interesting as we need
 - Affordable trials
 - Projects that are free of (or easy for) legal/IP issues
- Off-patent drugs are ‘financial orphans looking for adoption’ (Sukhatme 2014 Health Affairs Blog). Maybe, we can adopt some of them!
- Literature and conferences are full of stories of missed opportunities
Randomized clinical trial - 120 RCC patients - IL-2 for 7 days preop
(Klatte 2006 Br J Cancer)

Figure 3 Kaplan–Meier survival estimates of patients treated with IL-2 (-----, IL-2 group) and without treatment (----, control group) according to (A) tumour-specific survival and (B) progression-free survival.
Building up a plan to be successful

Success = improving cancer patients’ outcomes (thanks to drug repurposing here)
1/ Mapping the potential – ReDO

- Collect data on hard repurposing opportunities → 300 drugs now!
- Review evidence for a selection of promising candidates
- Understand the non-scientific reasons of lack of success

http://www.redo-project.org/

http://www.redo-project.org/db

(Pantziarka 2018 Ecancermedicalscience)
2/ First trials – Exploring the field

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Cancer</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloroacetate</td>
<td>Glioblastoma</td>
<td>1</td>
</tr>
<tr>
<td>Fluvastatin & celecoxib</td>
<td>Low-grade optic pathway glioma</td>
<td>1</td>
</tr>
<tr>
<td>Ketorolac</td>
<td>Breast cancer</td>
<td>3</td>
</tr>
<tr>
<td>Clarithromycin & pioglitazone</td>
<td>NSCLC</td>
<td>2</td>
</tr>
<tr>
<td>9 drugs</td>
<td>Glioblastoma</td>
<td>1</td>
</tr>
<tr>
<td>Low-dose paclitaxel</td>
<td>Melanoma</td>
<td>Pilot</td>
</tr>
<tr>
<td>Nitroglycerin</td>
<td>NSCLC</td>
<td>2</td>
</tr>
<tr>
<td>ATRA & pioglitazone</td>
<td>AML</td>
<td>1/2</td>
</tr>
</tbody>
</table>
2/ First trials – Failing (& learning)

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Cancer</th>
<th>Phase</th>
<th>Prim. endpoint met?</th>
<th>Results</th>
<th>FU trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloroacetate</td>
<td>Glioblastoma</td>
<td>1</td>
<td>Yes (safety)</td>
<td>Dunbar 2014 Invest New Drugs</td>
<td>No</td>
</tr>
<tr>
<td>Fluvastatin & celecoxib</td>
<td>Low-grade optic pathway glioma</td>
<td>1</td>
<td>Yes (Phase 2 dose)</td>
<td>SIOP 2019</td>
<td>TBD</td>
</tr>
<tr>
<td>Ketorolac</td>
<td>Breast cancer</td>
<td>3</td>
<td>No (efficacy)</td>
<td>SABCS 2018</td>
<td>No</td>
</tr>
<tr>
<td>Clarithromycin & pioglitazone</td>
<td>NSCLC</td>
<td>2</td>
<td>No (efficacy)</td>
<td>ESMO 2019</td>
<td>No</td>
</tr>
<tr>
<td>9 drugs</td>
<td>Glioblastoma</td>
<td>1</td>
<td>Yes (safety)</td>
<td>SNO 2018</td>
<td>TBD</td>
</tr>
<tr>
<td>Low-dose paclitaxel</td>
<td>Melanoma</td>
<td>Pilot</td>
<td>Yes (biology)</td>
<td>German Skin Cancer Conf 2018</td>
<td>No</td>
</tr>
<tr>
<td>Nitroglycerin</td>
<td>NSCLC</td>
<td>2</td>
<td>No (efficacy)</td>
<td>ESTRO 2018</td>
<td>No</td>
</tr>
<tr>
<td>ATRA & pioglitazone</td>
<td>AML</td>
<td>1/2</td>
<td>Yes (safety) but...</td>
<td>ASH 2019</td>
<td>No</td>
</tr>
</tbody>
</table>
3/ A more rational approach – Drugs

Pantziarka et al 2019, submitted
Figure credit: Ciska Verbaanderd

+ similar methods for trials registries
Analysis

Trials that say “maybe”: the disconnect between exploratory and confirmatory testing after drug approval

BMJ 2018; 360 doi: https://doi.org/10.1136/bmj.k959 (Published 20 March 2018)

Key messages

- After a new drug receives approval, companies and public sponsors often run numerous small trials exploring the drug’s activity in different indications.

- The level of evidence produced in such trials is usually low, and drug companies and public sponsors often fail to follow up on promising exploratory findings by running large, confirmatory trials.
Some financial orphans need help now

Let’s help unsexy confirmatory trials

3 trials

- **Vitamin D** supplementation as adjuvant treatment in early stage cutaneous malignant melanoma (NCT01748448)

- A phase 3 double-blind placebo-controlled randomised trial of aspirin on recurrence and survival in colon cancer patients (NCT02301286)

- Maintenance therapy with aromatase inhibitor in epithelial ovarian cancer: a randomised double-blinded placebo-controlled phase 3 trial (NCT04111978)
3/ A more rational approach – Trials (2)

Probability of Success of Trials *(Wong & Lo Biostat 2019)*

Probability of Phase 1 \rightarrow Market Oncology <5%
It doesn’t really get better \rightarrow 2015 = artefact due to methodology used
How to increase our success rate?

1. Multiple arms in the same trial *(Parmar 2014 Lancet)*

2.

3.
Figure 1: Probability of a patient group being found superior to control, as a function of the number of groups (assuming probability of a single group being found superior is 50%).

- Five patient groups
- Four patient groups
- Three patient groups
- Two patient groups
- Reference
How to increase our success rate?

1. Multiple arms in the same trial (*Parmar 2014 Lancet*)

2. Use of a biomarker for patients’ selection → 5.5% to 10.3% - FDA data (*Wong 2019 Biostatistics*)

3.
How to increase our success rate?

1. Multiple arms in the same trial (Parmar 2014 Lancet)
2. Use of a biomarker for patients’ selection (Wong 2019 Biostat)
3. Ask for regulators’ scientific advice & comply with it (Regnstrom 2010 Eur J Clin Pharmacol)

<table>
<thead>
<tr>
<th>Compliance Category</th>
<th>Compliance</th>
<th>P-value (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-compliant to SA</td>
<td>6/20 (30%)</td>
<td>0.166 [0.059; 0.465]</td>
</tr>
<tr>
<td>Compliant to SA</td>
<td>38/39 (97%)</td>
<td>14.709 [1.946; 111.158]</td>
</tr>
<tr>
<td>No-SA (n=119) or SA without a assessment of compliance</td>
<td>93/129 (72%)</td>
<td>1</td>
</tr>
</tbody>
</table>
With so many drug repurposing candidates, multi-arm trials are a no brainer.

Use biomarker and ask for scientific advice upfront, whenever possible.

Plan we initiated in 2018:

1. Identify cancer trials that can accept new arms

2. Work out proposal of strong drug candidates supported by good preclinical and early phase trial data

3. Offer funding to plug in a new arm
Identify trials that accept new arms

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Disease and setting</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAMPEDE</td>
<td>UK</td>
<td>Advanced and metastatic prostate cancer</td>
<td>Ongoing</td>
</tr>
<tr>
<td>ACTIW</td>
<td>France</td>
<td>Chronic myeloid leukemia in chronic phase</td>
<td>Ongoing</td>
</tr>
<tr>
<td>I-SPY-2</td>
<td>USA</td>
<td>Breast cancer, neo-adjuvant</td>
<td>Ongoing</td>
</tr>
<tr>
<td>GBM AGILE</td>
<td>USA</td>
<td>Newly-diagnosed and recurrent glioblastoma</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Precision Promise</td>
<td>USA</td>
<td>Advanced pancreatic cancer</td>
<td>In preparation</td>
</tr>
<tr>
<td>LEAP</td>
<td>USA</td>
<td>Acute myeloid leukemia in patients >60</td>
<td>Ongoing</td>
</tr>
<tr>
<td>NRG GI-002</td>
<td>USA</td>
<td>Rectal cancer, neo-adjuvant</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Brain Matrix</td>
<td>UK</td>
<td>Newly-diagnosed adult and pediatric gliomas</td>
<td>In preparation</td>
</tr>
<tr>
<td>MYDRUG</td>
<td>USA</td>
<td>Multiple Myeloma, NOS</td>
<td>Ongoing</td>
</tr>
<tr>
<td>UPSTREAM</td>
<td>Belgium</td>
<td>Recurrent head & neck cancers</td>
<td>Ongoing</td>
</tr>
<tr>
<td>FAR-RMS</td>
<td>UK</td>
<td>Newly-diagnosed & recurrent rhabdomyosarcoma</td>
<td>In preparation</td>
</tr>
<tr>
<td>MAGMA</td>
<td>Australia</td>
<td>Newly-diagnosed glioblastoma</td>
<td>In preparation</td>
</tr>
<tr>
<td>REECUR</td>
<td>UK</td>
<td>Recurrent and refractory Ewing sarcoma</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Cancer</td>
<td>Drug candidate proposed</td>
<td>Outcome of discussion</td>
<td>Reasons (my interpretation)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Prostate</td>
<td>Low-dose cyclophosphamide</td>
<td>No</td>
<td>No additional arm needed</td>
</tr>
<tr>
<td>Breast</td>
<td>Propranolol (with trastuzumab)</td>
<td>No</td>
<td>Change in standard of care & financial model inadequate for off-patent drugs</td>
</tr>
<tr>
<td>CML</td>
<td>Clarithromycin, tigecycline</td>
<td>No</td>
<td>Weak evidence for candidates</td>
</tr>
<tr>
<td>AML</td>
<td>ATRA, pioglitazone, azacitidine</td>
<td>No</td>
<td>Trial in preparation, too early</td>
</tr>
<tr>
<td>Rectal</td>
<td>Nelfinavir</td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td>None specific</td>
<td>No?</td>
<td>No interest & financial model inadequate for off-patent drugs</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>Work ongoing</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Ewing</td>
<td>Work ongoing</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>
Now what?

Trying harder while addressing non-scientific issues in parallel
Regulatory issues

- Learning by doing: **Orphan Drug Designation (ODD)**

On 12 December 2016, orphan designation (EU/3/16/1805) was granted by the European Commission to The Anticancer Fund, Belgium, for propranolol for the treatment of soft tissue sarcoma.

- Adapting the **regulatory framework** in Europe (*Verbaanderd 2017 Trends in Cancer*)
Financial orphan – Alternative models?

- Government or philanthropic funding
 e.g. KCE pragmatic trials

- Company grants
 e.g. Grants4indication program - Bayer

- Crowdfunding initiatives
 e.g. NeoART trial

- Social impact or pay-for-success models
 e.g. Findacure

- New, collaborative business models
 e.g. Fair Medicine

- Public-private partnership models
 e.g. DNDi

Unpublished
Figure credit: Ciska Verbaanderd
The Fair Medicine model

Together we invest knowledge, time and money to produce better, safe and affordable medicines

Fair Medicine takes it differently than the classic pharmaceutical industry. We work with the coalition model. Patients, doctors, hospitals and pharmacists develop new resources together. **Together we invest knowledge, time and money.** And we’re transparent about the costs and what’s left at the end of the ride at acceptable profit. This enables us to access safe, effective and affordable medicines for everyone.
Acknowledgements

- Team @Anticancer Fund
 - Lydie Meheus
 - Pan Pantziarka
 - Rica Capistrano
 - Ilse Rooman
 - Sergio Crispino
 - Ciska Verbaanderd
 - Liese Vandeborne
 - Klara Rombauts
 - An Van Nuffel
 - Kristine Beckers
 - Guy Buyens
 - Saar Sinnaeve
 - Sarah Vandenbroeck
 - Carlo Bevilacqua
 - Gabry Kuijten
 - Luc Verelst

- @GlobalCures
 - Vidula Sukhatme
 - Vikas Sukhatme

- All collaborators in the trials we support

- The many researchers, clinicians & patients who contributed (in)directly to the ReDO list

- Contact: gauthier.bouche@anticancerfund.org