

Using tools of pharmacoepidemiology to identify potential opportunities for repurposing

Joshua J Gagne

November 14, 2019

Disclosure

• I have received salary support from grants from Eli Lilly and Company and Novartis Pharmaceuticals Corporation to the Brigham and Women's Hospital and was a consultant to Aetion, Inc. and Optum, Inc., all for unrelated work.

Overview

- Examples of pharmacoepidemiology in repurposing
- Data sources
- Approaches
- Conclusion

Many examples of repurposing

Drug name	Original indication	New indication	Date of approval	Repurposing approach used	Comments on outcome of repurposing
Rituximab	Various cancers	Rheumatoid arthritis	2006	Retrospective clinical analysis (remission of coexisting rheumatoid arthritis in patients with non-Hodgkin lymphoma treated with rituximab ¹⁴⁴)	Global sales of rituximab topped \$7 billion in 2015 (REF. ¹⁴⁵)
Raloxifene	Osteoporosis	Breast cancer	2007	Retrospective clinical analysis	Approved by the FDA for invasive breast cancer. Worldwide sales of \$237 million in 2015 (see <u>Related links</u>)
Fingolimod	Transplant rejection	MS	2010	Pharmacological and structural analysis ¹⁴⁶	First oral disease-modifying therapy to be approved for MS. Global sales for fingolimod (Gilenya) reached \$3.1 billion in 2017 (see <u>Related links</u>)
Dapoxetine	Analgesia and depression	Premature ejaculation	2012	Pharmacological analysis	Approved in the UK and a number of European countries; still awaiting approval in the US. Peak sales are projected to reach \$750 million
Topiramate	Epilepsy	Obesity	2012	Pharmacological analysis	Qsymia (Vivus) contains topiramate in combination with phentermine
Ketoconazole	Fungal infections	Cushing syndrome	2014	Pharmacological analysis	Approved by the EMA for Cushing syndrome in adults and adolescents above the age of 12 years (see <u>Related links</u>)
Aspirin	Analgesia	Colorectal cancer	2015	Retrospective clinical and pharmacological analysis	US Preventive Services Task Force released draft recommendations in September 2015 regarding the use of aspirin to help prevent cardiovascular disease and colorectal cancer ⁵²

BWH

VE RI E

Pushpakom S et al. Nat Rev Drug Discov 2019;18:41-58.

Many examples of repurposing

Drug name	Original indication	New indication	Date of approval	Repurposing approach used	Comments on outcome of repurposing
Rituximab	Various cancers	Rheumatoid arthritis	2006	Retrospective clinical analysis (remission of coexisting rheumatoid arthritis in patients with non-Hodgkin lymphoma treated with rituximab ¹⁴⁴)	Global sales of rituximab topped \$7 billion in 2015 (REF. ¹⁴⁵)
Raloxifene	Osteoporosis	Breast cancer	2007	Retrospective clinical analysis	Approved by the FDA for invasive breast cancer. Worldwide sales of \$237 million in 2015 (see <u>Related links</u>)
Fingolimod	Transplant rejection	MS	2010	Pharmacological and structural analysis ¹⁴⁶	First oral disease-modifying therapy to be approved for MS. Global sales for fingolimod (Gilenya) reached \$3.1 billion in 2017 (see <u>Related links</u>)
Dapoxetine	Analgesia and depression	Premature ejaculation	2012	Pharmacological analysis	Approved in the UK and a number of European countries; still awaiting approval in the US. Peak sales are projected to reach \$750 million
Topiramate	Epilepsy	Obesity	2012	Pharmacological analysis	Qsymia (Vivus) contains topiramate in combination with phentermine
Ketoconazole	Fungal infections	Cushing syndrome	2014	Pharmacological analysis	Approved by the EMA for Cushing syndrome in adults and adolescents above the age of 12 years (see <u>Related links</u>)
Aspirin	Analgesia	Colorectal cancer	2015	Retrospective clinical and pharmacological analysis	US Preventive Services Task Force released draft recommendations in September 2015 regarding the use of aspirin to help prevent cardiovascular disease and colorectal cancer ⁵²

BWH

A history of aspirin

	1758 Rev Edmond Stone consumes Willow tree bark	1829 Henri Leroux refinessalicin extraction process	1876 John Mclagan administers Salicin to patients with rheumatism in a clinical trial			
			1894Felix Hoffma Friedrich Bayer &	, ,		FDA approves aspirin use in suspected MI
n of Pharmacoepidemiology armacoeconomics	Identifies Ingredies 216 AD Willow used in	1838Raffael Piria produces Salicylic acid seph Buchner s willow's active nt:Salicin		n 1901 Pro	appr aspir after 1974 First randomize trial of aspirin and MI reported duction of	rin a stroke
Division and Pha	the civilized world as a common remedy	molecular structu	hardt determines the ire of acetylsalicylic acid synthesizes acetylsalicylic ac	of Aspirir	ped tablet form n	

VE RI E

Aspirin for colorectal cancer

Study type	N	Aspirin	Controls		OR (95% CI)	Significance	Heterogeneity
Randomised trials							
Daily aspirin	6	91/9833	154/9859	\Leftrightarrow	0.58 (0.44-0.78)	p=0.0002	p=0·45
Daily aspirin ≥5 years	6	74/8034	134/8012	\Leftrightarrow	0.55 (0.41-0.76)	p=0.0002	p=0·26
	N	Cases	Controls		OR (95% CI)	Significance	Heterogeneity
Case-control							
Any aspirin	26	10 464/25618	28300/47834	\Leftrightarrow	0-67 (0-60-0-74)	p<0.0001	p<0.0001
Maximum reported aspirin	17	1551/12659	2664/18153	\ominus	0-62 (0-58-0-67)	p<0.0001	p=0·13
Aspirin ≥5 years	10	971/7682	1534/10 029	ě	0.68 (0.63-0.75)	p<0.0001	p=0.82
Daily aspirin	4	165/1254	349/1523		0.49 (0.40-0.60)	p<0.0001	p=0.65
Daily aspirin ≥5 years	1	66/1668	121/1973	\Leftrightarrow	0.63 (0.46–0.86)	p=0.004	NA
	N	Aspirin	Controls		RR (95% CI)	Significance	Heterogeneity
Standard cohort							
Any aspirin	11	3791/2764414	3623/2514652	\ominus	0.85 (0.82-0.89)	p<0.0001	p=0·12
Maximum reported aspirin	8	661/664475	1858/1374905	\bigotimes	0.78 (0.71-0.84)	p<0.0001	p=0.02
Aspirin ≥5 years	4	889/1022192	1311/1304760	\Diamond	0.76 (0.70-0.82)	p<0.0001	p=0.32
Daily aspirin	5	741/658536	1115/819288	\Diamond	0.80 (0.73-0.88)	p<0.0001	p=0.01
Daily aspirin ≥5 years	1	60/38302	420/232116	\Leftrightarrow	0.68 (0.52-0.90)	p=0.006	NA
	N	Cases	Controls		OR (95% CI)	Significance	Heterogeneity
Nested case-control							
Any aspirin	6	2215/8926	65099/109526	\Leftrightarrow	0-87 (0-75-1-00)	p=0.07	p=0.005
Maximum reported aspirin	5	206/4457	8302/40 948		0-67 (0-58-0-77)	p<0.0001	p=0.10
Aspirin ≥5 years	1	116/228	23704/37935	\Leftrightarrow	0.62 (0.48-0.81)	p<0.0001	NA
Daily aspirin	1	53/165	8744/22975	ě	0.77 (0.55-1.07)	p=0·14	NA
Daily aspirin ≥5 years	1	29/141	7274/21505	\Leftrightarrow	0.51 (0.34-0.76)	p=0.012	NA
zany aspini 29 years							

Algra AM et al. Lancet Oncol 2012;13:518-27.

Division of Pharmacoepidemiology

and Pharmacoeconomics

Healthcare system generates lots of data

- IVEL RILLES

• EHR adoption continues to increase in US

https://dashboard.healthit.gov/quickstats/pages/FIG-Hospital-EHR-Adoption.php

Administrative claims data

Lab Results	Enrollment	Demographics	Dispensing	Encounters	Vital Signs
Person ID	Person ID	Person ID —	Person ID	Person ID	Person ID
Dates of order,	Enrollment start	Birth date	Dispensing date	Dates of service	Date & time of
collection & result	& end dates	Sex	Dispensing MD	Provider seen	measurement
Test type, immediacy & location	Drug coverage	Race	National drug	Type of encounter	Encounter date & type when
	Medical coverage		code (NDC)	Facility	measured
Procedure code & type			Days supply	Department	Height
Test result & unit	Etc.		Amount dispensed	Etc.	Weight
Abnormal result					Diastolic & systolic BP
	Death				Tobacco use &
Ordering provider	Person ID -		Procedures	Diagnoses	type
Department	Date of death			Person ID	BP type & position
Facility	Cause of death		Person ID	Date	
Etc.	Source		Dates of service	Primary diagnosis	Etc.
			Procedure code &	flag	
	Confidence		type	Encounter type &	
			Encounter type &	provider	

provider

Etc.

Diagnosis code &

type Etc.

9

Distributed data networks

Network	Geography	Type of data	n
AsPEN: Asian Pharmacoepidemiology Network	Asia-Pacific	Claims	220M
CNODES: Canadian Network for Observational Drug Effect Studies	Canada, US, UK	Claims, EHR	35M (Canada)
HCSRN: Health Care Systems Research Network	US and Israel	Claims, EHR	16M
PCORnet: National Patient-Centered Clinical Research Network	US	Claims, EHR	100M
PROTECT: Pharmacoepidemiological Research on Outcome of Therapeutics by a European Consortium	European Union	Claims, EHR	100M
Sentinel	US	Claims, EHR	293M
VSD: Vaccine Datalink	US	EHR	9M

Sentinel system

Sentinel distributed database

- 292.5 million unique patient identifiers*
- **14.4 billion** prescription drug dispensings
- **13.3 billion** unique medical encounters
- 66.9 million individuals currently contributing medical and pharmacy data

 Thiazolidinediones (TZDs) – rosiglitazone, pioglitazone – are approved to treat type 2 diabetes

- Agonists for peroxisome-proliferator-activated receptor gamma
- TZDs have been found to suppress microglial activities in animals by interfering with the inflammatory feedback loop and preventing neurodegeneration
- Cohort of Medicare beneficiaries with no evidence of Parkinson disease
- New user, active comparator cohort design

TZDs and Parkinson Disease

- Initiators of TZDs compared to initiators of sulfonylureas
- Propensity score matching account for 81 variables
- Compared any use and increasing durations of continuous use up to 10 months

VE RU E

TZDs and Parkinson Disease

	Unmato	ched	Match	ied	
Characteristic	Sulfonylurea users (n = 24,167)	TZD users (n = 5,230)	Sulfonylurea users (n = 5,225)	TZD users (n = 5,225)	
Age, mean (sd)	78.7 (7.0)	77.6 (6.9)	77.5 (6.9)	77.6 (6.9)	
Female sex, %	72.9%	72.9%	72.6%	72.9%	
No. days hospitalized, mean (sd)	3.0 (6.4)	2.2 (5.4)	2.2 (5.3)	2.2 (5.4)	
No. meds dispensed, mean (sd)	6.9 (4.5)	7.1 (4.4)	7.0 (4.5)	7.1 (4.4)	
Combined comorbidity score, mean (sd)	1.7 (2.5)	1.4 (2.4)	1.4 (2.4)	1.4 (2.4)	
Alzheimer disease, %	7.1%	6.6%	6.7%	6.6%	
Cancer, %	17.2%	16.3%	16%	16.3%	
Hyperlipidemia, %	41.9%	58.8%	58.8%	58.8%	
Use of statins, %	24.8%	38.6%	37.4%	38.6%	
Use of Parkinsonism-inducing meds, %	7.4%	5.8%	5.6%	5.8%	

Connolly JG et al. Am J Epidemiol 2015;182:936-44.

TZDs and Parkinson Disease

Connolly JG et al. Am J Epidemiol 2015;182:936-44.

TZDs and Parkinson Disease

BWH

NET-PD FS-Zone Investigators. Lancet Neurol 2015;14:795-803.

Observational studies can also get it wrong

Relative Risk

Michels KB et al. Circulation 2003;107:1830-33.

Beta-blockers for treatment of COPD?

Du Q et al. PLoS One 2014;9:e113048.

BWH

VET RIT I

We are getting better at detecting when we are wrong

	Total study cohort (n=22 985)		
	Cardioselective BBs (n=18 406)	Non-DHP CCBs (n=4579)	
Age, mean (SD)	70.4 (9.9)	73.8 (10.2)	
Male, %	59.6	55.4	
Resource utilisation			
Number of hospitalisation	1.4 (0.8)	1.6 (1.0)	
due to any episodes, mean			
(SD)			
Number of outpatient visits	8.2 (6.2)	14.5 (9.6)	
due to any episodes, mean			
(SD)			
Number of outpatient visits	3.9 (4.3)	5.2 (4.9)	
due to CV episodes,‡ mean			
(SD)			
Number of outpatient visits	1.2 (2.6)	2.7 (3.9)	
due to pulmonary-related			
episodes,§ mean (SD)			
Number of drugs, mean	14.4 (6.7)	21.0 (9.4)	
(SD)			

Dong YH et al. BMJ Open 2017;7:e012997.

19

We are getting better at detecting when we are wrong

Table 5 Results of sensitivity analyses comparing cardioselective BB versus non-DHP CCB initiators in three US databases*

		Sensitivity analysi	S			
Type of analysis	Main analysis†	PS matching caliper of 0.005	Asymmetric PS trimming	hd-PS with additional 100 empirical covariates	Restricting to high-risk patients	
Database	HR after PS matching (95% CI)					
COPD hospitalisati	ons					
US Optum	0.54 (0.37 to 0.87)	0.59 (0.35 to 0.97)	0.67 (0.37 to 1.23)	0.77 (0.44 to 1.34)	0.61 (0.30 to 1.22)	
US PACE	0.51 (0.39 to 0.67)	0.52 (0.40 to 0.67)	0.50 (0.37 to 0.66)	0.61 (0.46-0.80)	0.56 (0.39 to 0.81)	
US PAAD	0.45 (0.32 to 0.62)	0.46 (0.33 to 0.64)	0.36 (0.25 to 0.51)	0.59 (0.41 to 0.84)	0.52 (0.31 to 0.88)	
Summary estimate	0.50 (0.41 to 0.69)	0.51 (0.42 to 0.61)	0.47 (0.35 to 0.64)	0.62 (0.51 to 0.76)	0.56 (0.42 to 0.73)	

Dong YH et al. BMJ Open 2017;7:e012997.

We are getting better at detecting when we are wrong

BWH

Table 4 Re	sults for 30-day COPD hospitalisations				
comparing cardioselective BB versus non-DHP CCB					
initiators*					

Database	Crude HR (95% Cl)	HR after PS matching (95% CI)
US Optum	0.28 (0.06 to 1.23)	1.33 (0.17 to 10.70)
US PACE	0.27 (0.15 to 0.47)	0.70 (0.31 to 1.54)
US PAAD	0.19 (0.09 to 0.37)	0.43 (0.18 to 0.99)
Italy RER	0.22 (0.10 to 0.48)	0.37 (0.16 to 0.84)
Taiwan NHI	0.28 (0.15 to 0.51)	0.67 (0.32 to 1.38)
Summary	0.25 (0.18 to 0.34)	0.55 (0.37 to 0.82)
estimate		

We are getting better at detecting when we are wrong

Pharmacoepidemiology Pharmacoeconomics

BWH

and

of

Division

Conclusions

- Great care (and epidemiological thinking) is needed when conducting observational studies of therapeutics
- Secondary data sources do not always include information on every variable (exposures, confounders, outcomes) of interest and follow-up can be short in many databases
- However, we are constantly improving the data and the methods for analyzing the data for meaningful inference
- Large healthcare data and networks of databases provide unprecedented opportunity for identifying and evaluating targets for repurposing