

Using tools of pharmacoepidemiology to identify potential opportunities for repurposing

Joshua J Gagne

November 14, 2019

Disclosure

- I have received salary support from grants from Eli Lilly and Company and Novartis Pharmaceuticals Corporation to the Brigham and Women's Hospital and was a consultant to Aetion, Inc. and Optum, Inc., all for unrelated work.

Overview

- Examples of pharmacoepidemiology in repurposing
- Data sources
- Approaches
- Conclusion

Many examples of repurposing

Drug name	Original indication	New indication	Date of approval	Repurposing approach used	Comments on outcome of repurposing
Rituximab	Various cancers	Rheumatoid arthritis	2006	Retrospective clinical analysis (remission of coexisting rheumatoid arthritis in patients with non-Hodgkin lymphoma treated with rituximab ¹⁴⁴)	Global sales of rituximab topped \$7 billion in 2015 (REF. ¹⁴⁵)
Raloxifene	Osteoporosis	Breast cancer	2007	Retrospective clinical analysis	Approved by the FDA for invasive breast cancer. Worldwide sales of \$237 million in 2015 (see Related links)
Fingolimod	Transplant rejection	MS	2010	Pharmacological and structural analysis ¹⁴⁶	First oral disease-modifying therapy to be approved for MS. Global sales for fingolimod (Gilenya) reached \$3.1 billion in 2017 (see Related links)
Dapoxetine	Analgesia and depression	Premature ejaculation	2012	Pharmacological analysis	Approved in the UK and a number of European countries; still awaiting approval in the US. Peak sales are projected to reach \$750 million
Topiramate	Epilepsy	Obesity	2012	Pharmacological analysis	Qsymia (Vivus) contains topiramate in combination with phentermine
Ketoconazole	Fungal infections	Cushing syndrome	2014	Pharmacological analysis	Approved by the EMA for Cushing syndrome in adults and adolescents above the age of 12 years (see Related links)
Aspirin	Analgesia	Colorectal cancer	2015	Retrospective clinical and pharmacological analysis	US Preventive Services Task Force released draft recommendations in September 2015 regarding the use of aspirin to help prevent cardiovascular disease and colorectal cancer ⁵²

Many examples of repurposing

Drug name	Original indication	New indication	Date of approval	Repurposing approach used	Comments on outcome of repurposing
Rituximab	Various cancers	Rheumatoid arthritis	2006	Retrospective clinical analysis (remission of coexisting rheumatoid arthritis in patients with non-Hodgkin lymphoma treated with rituximab ¹⁴⁴)	Global sales of rituximab topped \$7 billion in 2015 (REF. ¹⁴⁵)
Raloxifene	Osteoporosis	Breast cancer	2007	Retrospective clinical analysis	Approved by the FDA for invasive breast cancer. Worldwide sales of \$237 million in 2015 (see Related links)
Fingolimod	Transplant rejection	MS	2010	Pharmacological and structural analysis ¹⁴⁶	First oral disease-modifying therapy to be approved for MS. Global sales for fingolimod (Gilenya) reached \$3.1 billion in 2017 (see Related links)
Dapoxetine	Analgesia and depression	Premature ejaculation	2012	Pharmacological analysis	Approved in the UK and a number of European countries; still awaiting approval in the US. Peak sales are projected to reach \$750 million
Topiramate	Epilepsy	Obesity	2012	Pharmacological analysis	Qsymia (Vivus) contains topiramate in combination with phentermine
Ketoconazole	Fungal infections	Cushing syndrome	2014	Pharmacological analysis	Approved by the EMA for Cushing syndrome in adults and adolescents above the age of 12 years (see Related links)
Aspirin	Analgesia	Colorectal cancer	2015	Retrospective clinical and pharmacological analysis	US Preventive Services Task Force released draft recommendations in September 2015 regarding the use of aspirin to help prevent cardiovascular disease and colorectal cancer ⁵²

A history of aspirin

Aspirin for colorectal cancer

Healthcare system generates lots of data

- ~90% of Americans have health insurance
- EHR adoption continues to increase in US

Administrative claims data

Distributed data networks

Network	Geography	Type of data	n
AsPEN: Asian Pharmacoepidemiology Network	Asia-Pacific	Claims	220M
CNODES: Canadian Network for Observational Drug Effect Studies	Canada, US, UK	Claims, EHR	35M (Canada)
HCSRN: Health Care Systems Research Network	US and Israel	Claims, EHR	16M
PCORnet: National Patient-Centered Clinical Research Network	US	Claims, EHR	100M
PROTECT: Pharmacoepidemiological Research on Outcome of Therapeutics by a European Consortium	European Union	Claims, EHR	100M
Sentinel	US	Claims, EHR	293M
VSD: Vaccine Datalink	US	EHR	9M

Sentinel system

**Lead: Harvard Pilgrim
Health Care Institute**

**Data & Scientific
Partners**

Booz | Allen | Hamilton

IBM Watson Health

DEPARTMENT OF POPULATION MEDICINE

HARVARD
MEDICAL SCHOOL

Harvard Pilgrim
Health Care Institute

Humana

OPTUM®

GDIT

OPTUM Labs®

KAI SER PERMANENTE®

Colorado
Hawaii
Mid-Atlantic
Northern California
Northwest
Washington

RUTGERS

KAI SER PERMANENTE®

Kaiser Permanente Washington
Health Research Institute

TriNetX

Sentinel distributed database

- **292.5 million unique patient identifiers***
- **14.4 billion prescription drug dispensings**
- **13.3 billion unique medical encounters**
- **66.9 million individuals currently contributing medical and pharmacy data**

TZDs and Parkinson Disease

- Thiazolidinediones (TZDs) – rosiglitazone, pioglitazone – are approved to treat type 2 diabetes
- Agonists for peroxisome-proliferator-activated receptor gamma
- TZDs have been found to suppress microglial activities in animals by interfering with the inflammatory feedback loop and preventing neurodegeneration
- Cohort of Medicare beneficiaries with no evidence of Parkinson disease
- New user, active comparator cohort design
- Initiators of TZDs compared to initiators of sulfonylureas
- Propensity score matching account for 81 variables
- Compared any use and increasing durations of continuous use up to 10 months

TZDs and Parkinson Disease

Characteristic	Unmatched		Matched	
	Sulfonylurea users (n = 24,167)	TZD users (n = 5,230)	Sulfonylurea users (n = 5,225)	TZD users (n = 5,225)
Age, mean (sd)	78.7 (7.0)	77.6 (6.9)	77.5 (6.9)	77.6 (6.9)
Female sex, %	72.9%	72.9%	72.6%	72.9%
No. days hospitalized, mean (sd)	3.0 (6.4)	2.2 (5.4)	2.2 (5.3)	2.2 (5.4)
No. meds dispensed, mean (sd)	6.9 (4.5)	7.1 (4.4)	7.0 (4.5)	7.1 (4.4)
Combined comorbidity score, mean (sd)	1.7 (2.5)	1.4 (2.4)	1.4 (2.4)	1.4 (2.4)
Alzheimer disease, %	7.1%	6.6%	6.7%	6.6%
Cancer, %	17.2%	16.3%	16%	16.3%
Hyperlipidemia, %	41.9%	58.8%	58.8%	58.8%
Use of statins, %	24.8%	38.6%	37.4%	38.6%
Use of Parkinsonism-inducing meds, %	7.4%	5.8%	5.6%	5.8%

TZDs and Parkinson Disease

TZDs and Parkinson Disease

Observational studies can also get it wrong

Beta-blockers for treatment of COPD?

We are getting better at detecting when we are wrong

	Total study cohort (n=22 985)	
	Cardioselective BBs (n=18 406)	Non-DHP CCBs (n=4579)
Age, mean (SD)	70.4 (9.9)	73.8 (10.2)
Male, %	59.6	55.4
<i>Resource utilisation</i>		
Number of hospitalisation due to any episodes, mean (SD)	1.4 (0.8)	1.6 (1.0)
Number of outpatient visits due to any episodes, mean (SD)	8.2 (6.2)	14.5 (9.6)
Number of outpatient visits due to CV episodes,‡ mean (SD)	3.9 (4.3)	5.2 (4.9)
Number of outpatient visits due to pulmonary-related episodes,§ mean (SD)	1.2 (2.6)	2.7 (3.9)
Number of drugs, mean (SD)	14.4 (6.7)	21.0 (9.4)

We are getting better at detecting when we are wrong

Table 5 Results of sensitivity analyses comparing cardioselective BB versus non-DHP CCB initiators in three US databases*

Type of analysis	Main analysis†	Sensitivity analysis				Restricting to high-risk patients
		PS matching caliper of 0.005	Asymmetric PS trimming	hd-PS with additional 100 empirical covariates		
Database		HR after PS matching (95% CI)				
COPD hospitalisations						
US Optum	0.54 (0.37 to 0.87)	0.59 (0.35 to 0.97)	0.67 (0.37 to 1.23)	0.77 (0.44 to 1.34)	0.61 (0.30 to 1.22)	
US PACE	0.51 (0.39 to 0.67)	0.52 (0.40 to 0.67)	0.50 (0.37 to 0.66)	0.61 (0.46–0.80)	0.56 (0.39 to 0.81)	
US PAAD	0.45 (0.32 to 0.62)	0.46 (0.33 to 0.64)	0.36 (0.25 to 0.51)	0.59 (0.41 to 0.84)	0.52 (0.31 to 0.88)	
Summary estimate	0.50 (0.41 to 0.69)	0.51 (0.42 to 0.61)	0.47 (0.35 to 0.64)	0.62 (0.51 to 0.76)	0.56 (0.42 to 0.73)	

We are getting better at detecting when we are wrong

Table 4 Results for 30-day COPD hospitalisations comparing cardioselective BB versus non-DHP CCB initiators*

Database	Crude HR (95% CI)	HR after PS matching (95% CI)
US Optum	0.28 (0.06 to 1.23)	1.33 (0.17 to 10.70)
US PACE	0.27 (0.15 to 0.47)	0.70 (0.31 to 1.54)
US PAAD	0.19 (0.09 to 0.37)	0.43 (0.18 to 0.99)
Italy RER	0.22 (0.10 to 0.48)	0.37 (0.16 to 0.84)
Taiwan NHI	0.28 (0.15 to 0.51)	0.67 (0.32 to 1.38)
Summary estimate	0.25 (0.18 to 0.34)	0.55 (0.37 to 0.82)

We are getting better at detecting when we are wrong

Conclusions

- Great care (and epidemiological thinking) is needed when conducting observational studies of therapeutics
- Secondary data sources do not always include information on every variable (exposures, confounders, outcomes) of interest and follow-up can be short in many databases
- However, we are constantly improving the data and the methods for analyzing the data for meaningful inference
- Large healthcare data and networks of databases provide unprecedented opportunity for identifying and evaluating targets for repurposing