Supervised and Unsupervised Strategies to Identify Medications that Affect Cancer Recurrence Risk

Timothy L. Lash
Rollins Professor & Chair
Department of Epidemiology
Cancer Prevention and Control Leader
Winship Cancer Institute
Scope of the public health problem

~14 million new cancer cases per year
Lung, female breast, colorectal and stomach cancers account for more than 40%
Breast cancer ~25% of incident cases in women (~1.7 million cases per year)
Colorectal cancer 3rd most common incident cancer (~1.4 million cases per year)
As low human development index (HDI) countries develop, their patterns of cancer incidence follow that of high HDI countries

IARC World Cancer Factsheet, January 2014. www.cruk.org/cancerstats
Breast cancer and HDI; incidence

Most commonly diagnosed cancers by Human Development Index

New cases per 100,000 population, age standardised

- **Very high HDI**
 - Breast
 - Prostate
 - Lung
 - Bowel
 - Stomach

- **High HDI**
 - Breast
 - Lung
 - Prostate
 - Bowel
 - Stomach

- **Medium HDI**
 - Lung
 - Liver
 - Stomach
 - Breast
 - Bowel

- **Low HDI**
 - Breast
 - Cervix
 - Prostate
 - Liver
 - Oesophagus

Countries for which an HDI score has not been defined

IARC World Cancer Factsheet, January 2014. www.cruk.org/cancerstats
Females and HDI; prevalence

1. **Breast** - 151 countries worldwide
2. **Cervix** - 30 countries in Africa, the Americas and Asia
3. **Thyroid** - South Korea

IARC World Cancer Factsheet, January 2014. www.cruk.org/cancerstats
Males and HDI; prevalence

Males

1. **Prostate** - 124 countries worldwide
2. **Bowel** - 23 countries in Africa, Asia and Eastern Europe
3. **Stomach** - 9 countries in Asia
4. **Lip, Oral Cavity** - 7 countries in South-Central Asia and Melanesia
5. **Bladder** - 7 countries in Northern Africa, Asia
6. **Kaposi Sarcoma** - Lesotho, Malawi, Mozambique, Swaziland, Zimbabwe, Zambia
7. **Liver** - Gambia, Laos
8. **Lung** - China, Vietnam
9. **Pharynx** - Bangladesh, Myanmar

IARC World Cancer Factsheet, January 2014. www.cruk.org/cancerstats
Cancer treatment in low/medium HDI

Low HDI settings
- Cancer treatment facilities are not universally available
- Life extending treatment is often unavailable, generally for economic reasons

Medium HDI settings
- Diagnostic and treatment structures in place
- Economic pressures to pay for drugs
- Poor training in specialized oncology care
Repurposing drugs as potential adjuvant cancer therapy

Many drugs have pleiotropic effects

By and large, these drugs have not been associated with cancer incidence

Emerging evidence suggests some may have antineoplastic effects that may provide adjuvant cancer therapy

Two epidemiologic approaches to identifying candidate drugs
 Supervised: prespecify drugs with potential adjuvant cancer benefit
 Unsupervised: using large databases to agnostically estimate associations
Cardiovascular drugs as potential adjuvant cancer therapy

Many cardiovascular drugs have pleiotropic effects

By and large, these drugs have not been associated with cancer incidence

Emerging evidence suggests some may have antineoplastic effects that may provide adjuvant cancer therapy

- Aspirin
- Anti-hypertensives
- Statins
Aspirin: background

An analgesic, anti-pyretic, and anti-inflammatory drug

Irreversible inhibitor primarily of cyclooxygenase-1

Prevents the progression of existing cardiovascular disease

Reduces the risk of some cancers, especially colorectal cancer
Aspirin: adjuvant breast cancer therapy

Nurses’ Health Study (Holmes et al. J Clin Oncol 28:1467-1472)

4164 breast cancer patients within the Nurses’ Health Study, 1976 to 2002

Self-reported use of number of days per week using aspirin

Breast cancer mortality as the outcome

Adjusted hazard ratios, compared with never users:

0.91 (95% CI 0.62, 1.33) for once per week users
0.40 (95% CI 0.24, 0.65) for two to five times per week users
0.57 (95% CI 0.39, 0.82) for six to seven times per week users

Not adjusted for statins use
Aspirin: adjuvant breast cancer therapy

Swedish cohort study (Holmes et al. BMC Cancer 2014, 14:391)

27,426 breast cancer patients within the Swedish National Registries, 2005 to 2009
Aspirin prescriptions according to national registries
Breast cancer mortality as the outcome
Adjusted hazard ratios, compared with never users:
 1.05 (95% CI 0.87, 1.28) >75% users, up to six months before end of follow-up
 Overall, aspirin use was not associated with a lower risk of death from breast cancer

Not adjusted for statins use
34,188 breast cancer patients with median follow-up 7.1 years
5,325 patients developed recurrent disease.
Use of aspirin was not associated with the rate of recurrence (adjusted for statin use)
(HR = 1.0, 95% CI = 0.90, 1.1)
Prediagnostic use was associated with reduced recurrence rates (adjusted for statin use)
(HR = 0.92, 95% CI = 0.82, 1.0).
WE believe that it might be possible to treat breast cancer — the leading cause of female cancer death — with a drug that can already be found in nearly every medicine cabinet in the world: Aspirin.
Aspirin: adjuvant breast cancer therapy
Antihypertensives: background

Class of drugs used to treat hypertension
- Adrenergic receptor antagonists (mostly beta blockers)
- ACEi (angiotensin converting enzyme inhibitors)
- ARBs (angiotensin receptor blockers)
- Others (e.g., calcium channel blockers)
Beta blockers: adjuvant breast cancer therapy

Ireland General Medical Services Registry
(Barron et al. J Clin Oncol 29:2635-2644)

Breast cancer patients prescribed propranolol (n=70) or atenolol (n=525) 2001–2006
2 to 1 matched non-users of beta blockers
Breast cancer mortality as the outcome
Adjusted hazard ratios, any user compared with never users:
 0.19 (95% CI 0.06, 0.60) for propranolol
1.08 (95% CI 0.84, 1.40) for atenolol
Beta blockers: adjuvant breast cancer therapy

1413 breast cancer patients 1995–2007
102 beta-blocker users compared with 1311 non-users
Recurrence free survival as the outcome
Adjusted hazard ratios, any user compared with never users:
0.52 (95% CI 0.31, 0.88)
(A) Relapse-free survival (RFS) and (B) overall survival (OS) in patients with triple-negative breast cancer.

Melhem-Bertrandt A et al. JCO 2011;29:2645-2652
In the articles that accompany this editorial, two retrospective studies examine the association between the breast cancer patient's exposure to beta adrenergic antagonist medications and breast cancer recurrence and survival ... The ... articles suggest that these generally safe, inexpensive, and well-understood agents may provide therapeutic leverage in the context of breast cancer as well.
Modeled individually, the multivariable relative risk and 95% confidence intervals (RR, 95% CI) for breast cancer death were:
- 0.76 (0.54–1.05) for beta blockers
- 0.89 (0.60–1.32) for ACEIs
- 0.46 (0.35–0.60) for aspirin.

Modeled simultaneously:
- 0.83 (0.60–1.16) for beta blockers
- 1.00 (0.68–1.46) for ACEIs
- 0.46 (0.35–0.61) for aspirin
Our Danish study

3,414 breast cancer recurrences were recorded with median 6.8 years follow-up

3,660 users of any beta blocker (median 4.7 years of use) 3,075 users of any ACEi (median four years of use) and 1,989 users of any ARB (median 5.0 years of use)

Adjusted hazards ratio (including adjustment for statins)
- beta-blockers: 1.3, 95% CI: 1.1, 1.5
- ACEi: 1.1, 95% CI: 0.90, 1.3
- ARBs: 0.98, 95% CI: 0.76, 1.3
The unsupervised approach

Have shown the use of Danish cohort of breast cancer patients and use of aspirin or anti-hypertensives.

Linking to all medications and estimating association for each is a marginal additional effort.
The unsupervised approach

Near null associations

- glucocorticoids
- aspirin
- selective COX-2 inhibitors
- opioids

- ACE inhibitors
- NSAIDs
- digoxin
- SSRIs

Protective association

- use of simvastatin correlates with a decreased risk of breast cancer recurrence
Incident Comorbidities and All-Cause Mortality among Five-Year Survivors of Stage I and II Breast Cancer Diagnosed at Age 65 or Older: A Prospective Matched Cohort Study

Jennifer H. Jordan, PhD1, Soe Soe Thwin, PhD, MS2,3, Timothy L. Lash, DSc4, Diana S.M. Buist, PhD, MPH5, Terry S. Field, DSc6, Reina Haque, PhD, MPH7, Pamala A. Pawloski, PharmD8, Hans V. Petersen, MS9, Marianne N. Prout, MD, MPH10, Virginia P. Quinn, PhD7, Marianne Ulcickas Yood, DSc, MPH10, Rebecca A. Silliman, MD, PhD2, and Ann M. Geiger, PhD, MPH11

5-year breast cancer survivors insured by one of six US integrated health care systems

Matched with women free of breast cancer

Incident occurrence of new diseases, other than breast cancer, over subsequent 10 years
Results

Older five-year breast cancer survivors did not acquire new diseases more often than matched women free of breast cancer in the subsequent 10 years.

(HR=1.0, 95%CI: 0.93,1.1)

Most common incident comorbidities in the survivor and comparison cohorts were
dementia (18% vs. 19%)
congestive heart failure (14% vs. 16%)
diabetes (11% vs. 8.6%)

Equivalent individual incident comorbidities during the ten-year follow-up period except for
diabetes (HR=1.4, 95% CI: 1.1,1.8) MI (HR=0.75, 95% CI: 0.57,0.99)

Cancer history continued to be a hazard for mortality 6–15 years after diagnosis.

(HR=1.3, 95%CI: 1.1,1.4).
The results reported herein correspond to the Specific Aims of R01CA166825 from the US NCI (Lash) and to the Specific Aims of R15-2013-15861 from the Lundbeck Foundation (Cronin-Fenton). Also supported by funding from the US NCI (R01 CA118708, Lash), the Danish Cancer Society (DP06117, Hamilton-Dutoit), the Danish Medical Research Council (DOK 1158869, Lash), the Karen Elise Jensen Foundation (Sorensen), and the Program for Clinical Research Infrastructure established by the Lundbeck and the Novo Nordisk Foundations (Sorensen). Research reported herein also supported by the Emory Integrated Genomics Core Shared Resource of Winship Cancer Institute of Emory University, through the US NCI (2P30CA138292). Thomas P. Ahern was supported in part by funding from US NIGMS (P20 GM103644).
Statins: background

Class of drugs used to treat hypercholesterolemia

- Inhibiting hydroxymethylglutaryl-coenzyme A reductase (HMGCoAR)

 Reduce cardiovascular mortality, acute myocardial infarction, stroke, and arterial revascularization

1994 to 2008 prevalence of statin use among those 30 and older increased from 1.1% to 36% in Northern Denmark
A systematic review and meta-analysis of 10 studies reported a summary relative risk associating statin use with breast cancer recurrence of 0.64 (95% CI: 0.53 to 0.79). Int J Cancer. 2016;139(6):1281-1288.
Preliminary evidence:
HMG-CoA reductase

Window-of-opportunity trial (2013):
- 50 patients with invasive breast cancer
- Two weeks high-dose atorvastatin (80 mg per day) before surgery.
- Paired pre-treatment/post-treatment tumor samples assayed for Ki67 proliferation index & HMG-CoA reductase expression.

Our study using Danish registries

All female residents of Denmark diagnosed with Stage I-III invasive breast carcinoma, enrolled in the Danish Breast Cancer Cooperative Group (DBCG) registry

Linked cohort roster to the nationwide Danish Register of Medicinal Products to ascertain post-diagnosis prescription drug exposures

Ten years of active recurrence and mortality follow up for all DBCG enrollees (median: 6.8 years).
Our study: statins

 18% ever users of statins
 92% of statin prescriptions were for simvastatin

3419 breast cancer recurrences

Compared with non-users
 $aHR = 0.80$ (95%CI=0.64, 1.0)
 $aHR_{\text{simvastatin}} = 0.62$ (95%CI=0.46, 0.84)

Five year $aRD_{\text{simvastatin}} = -0.09$ (95%CI= -0.11, -0.08)

Recall that the high HDI to low HDI fatality risk difference is ~22%

Our study: statins

Results were similar when we restricted the analysis to women who did not use statins before diagnosis.

Simvastatin association was similar in strata of ER status, histologic grade, and whether or not a woman received adjuvant radiotherapy.

Competing risks analysis showed the simvastatin association to be similar for specific anatomic sites of recurrence.
Cholesterol, Cholesterol-Lowering Medication Use, and Breast Cancer Outcome in the BIG 1-98 Study

Table 4. Marginal Structural Modeling Results of Initiation of CLM During Endocrine Treatment and Outcome Among All Treatment Arms

<table>
<thead>
<tr>
<th>Variable</th>
<th>No.</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>5,944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of DFS events</td>
<td>1,432</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients reporting CLM initiation during protocol therapy</td>
<td>697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFS model results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univariable weighted*</td>
<td>0.81</td>
<td>0.67 to 0.97</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>Multivariable weighted†</td>
<td>0.79</td>
<td>0.66 to 0.95</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>No. of BCFI events</td>
<td>940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients reporting CLM initiation during protocol therapy</td>
<td>697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCFI model results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univariable weighted*</td>
<td>0.77</td>
<td>0.61 to 0.97</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Multivariable weighted†</td>
<td>0.76</td>
<td>0.60 to 0.97</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>No. of DRFI events</td>
<td>729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients reporting CLM initiation during protocol therapy</td>
<td>697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRFI model results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univariable weighted*</td>
<td>0.75</td>
<td>0.57 to 0.98</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>Multivariable weighted†</td>
<td>0.74</td>
<td>0.56 to 0.97</td>
<td>.03</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BCFI, breast-cancer-free interval; CLM, cholesterol-lowering medication; DFS, disease-free survival, DRFI, distant recurrence-free interval; HR, hazard ratio.

*Includes CLM as time-varying covariate.
†Includes CLM and cholesterol as time-varying covariates, with treatment assignment, nodal status, tumor size and grade, peritumoral vascular invasion, and local therapy as covariates in the model. The analysis was stratified by randomization option and prior chemotherapy use.

Published in: Signe Borgquist; Anita Giobbie-Hurder; Thomas P. Ahern; Judy E. Garber; Marco Colleoni; István Láng; Marc Debled; Bent Ejlertsen; Roger von Moos; Ian Smith; Alan S. Coates; Aron Goldhirsch; Manuela Rabaglio; Karen N. Price; Richard D. Gelber; Meredith M. Regan; Beat Thürlimann; JCO 2017, 35, 1179-1188.

DOI: 10.1200/JCO.2016.70.3116

Copyright © 2017 American Society of Clinical Oncology
Statins and colorectal cancer outcomes

Summary association with colorectal cancer-specific mortality

Pre-diagnostic statin use: HR=0.80; 95% CI 0.77, 0.84
Post-diagnostic statin use was HR=0.70; 95% CI: 0.60, 0.82 (PLoS One 2015;10(6):e0126944)

Dominated by two large studies, one from Denmark

Pre-diagnostic statin use: HR = 0.81, 95% CI: 0.75, 0.87 (N Engl J Med 2012;367(19):1792-802)
Statins and colorectal cancer outcomes

21,152 Danish early stage colorectal cancer patients, 5036 recurrences, 7084 deaths, and 4066 deaths from colorectal cancer

Use of statins in the preceding year was not associated with the hazard of colorectal cancer recurrence (aHR = 1.01, 95% CI: 0.93, 1.09)

Use of statins in the preceding year was associated with a reduced hazard of death from colorectal cancer (aHR = 0.72, 95% CI: 0.65, 0.79)
Statins and colorectal cancer outcomes

Among the 5036 patients with colorectal cancer recurrence, 20% had used statins in the preceding year.

Use of statins in the year preceding the recurrence was associated with a reduced hazard of colorectal cancer-specific mortality (aHR = 0.83, 95% CI: 0.74, 0.92)

and use of statins in the year preceding the recurrence was associated with a reduced hazard of death from causes except colorectal cancer (aHR = 0.78, 95% CI: 0.61, 1.00)

Statins and the healthy user bias

Thomsen et al (Epidemiology 2013;24:619–620)

Linked Danish health survey to prescription registry
“We found no evidence of a healthy lifestyle associated with statin use in Denmark, which corroborates observations from England and Wales. Instead, statin users appeared less healthy than other persons, with less healthy personal habits.”

Recurrence outcome is less susceptible to this bias than breast cancer or overall mortality
Null for other CV drugs
Mechanisms of antineoplastic action

Inhibition of proliferation by systemic cholesterol reduction
Stimulation of antitumor immune surveillance
Inhibition of tumor-associated HMG-CoAR activity
 Interruption of oncogenic signaling by prenylation-dependent proteins
Depletion of 27-hydroxycholesterol—a cholesterol metabolite with a plasma concentration associated with that of total cholesterol—and a breast tumor promoter through estrogen receptor stimulation

Inhibition of proliferation by systemic cholesterol reduction

Cholesterol stimulates tumor growth in a mouse model of ER-positive breast cancer. Time zero is onset of palpable tumor after ovariectomy.

Interruption of oncogenic signaling by prenylation-dependent proteins

FPP and GGPP post-translationally prenylate proteins to ensure their correct intracellular localization and function.

Members of the RAS oncogene superfamily depend on prenylation for successful placement in the plasma membrane.

Circulating levels of 27HC closely mirror those of cholesterol

27HC promotes the proliferation of ER-positive breast cancer cell lines in vitro, but not ER-negative cell lines

27HC functions as an endogenous SERM that exhibits ER-agonist activity

Growth of ER-positive tumors in several different animal models of breast cancer can be stimulated by 27HC administration and can be reversed by simultaneous administration of an ER antagonist.

Call for a clinical trial

So far, ten observational studies suggest a protective effect of statins on breast cancer recurrence or mortality.

These results are reinforced by experimental studies of statin effects on breast tumor biomarkers.

In Denmark, other cardiovascular drugs are not associated with a reduced risk of recurrence, and statin use is not associated with reduced risk of colorectal recurrence.

Additional observational evidence is unlikely to improve the evidence base.

Design considerations for a clinical trial

Choice of drug
- Simvastatin has greatest observational support
- Simvastatin has maximum pleiotropic potential
- Toxicity profile may be a concern (myopathies, including rhabdomyolysis, immunosuppression, insulin resistance)

Management of prevalent and incident hypercholesterolaemia
- Exclude current statins users and those with indications
- Concerns about cross-over: randomize to statins versus usual care

Design considerations for a clinical trial

Choice of drug
- Simvastatin has greatest observational support
- Simvastatin has maximum pleiotropic potential
- Toxicity profile may be a concern (myopathies, including rhabdomyolysis, immunosuppression, insulin resistance)

Management of prevalent and incident hypercholesterolaemia
- Exclude current statins users and those with indications
- Concerns about cross-over: randomize to statins versus usual care

Longitudinal data on treatment, confounders, and prognostic factors after randomization
- These permit inverse-probability weighting or g-estimation to estimate effects adjusted for exposure crossover, post-randomization confounding, and differential loss-to-follow-up

Collaborators

Universities of Aarhus, Aalborg
Henrik Toft Sørensen
Stephen Hamilton-Dutoit
Lars Pedersen
Jens Peter Garne
Deirdre Cronin Fenton
Gitte Sørensen
Anders Riis
Ole Thorlacius-Ussing
Peer Christiansen
DBCG & DCCG

Boston University
Rebecca Silliman
University of California, LA
Patricia Ganz
Steve Cole

University of Vermont
Thomas Ahern

Emory University
Tim Lash

Stavanger University
Emiel Janssen
Kristin Jonsdottir
Håvard Soiland
Nina Gran Egland

University of Bergen
Ernst Lien