Nutraceuticals: Challenges and Opportunities

Mark Hyman Rapaport MD Emory University School of Medicine

Conflicts of interest relevant to this presentation

- Previous funding from NCCAM to investigate the mechanism of action of Swedish massage therapy in normal volunteers
- Previous funding from NCCAM and NIMH to investigate the efficacy of St. John's Wort in minor depressive disorder
- Previous funding from NIMH investigating N-3 fatty acid therapy on immune function and the treatment of major depressive disorder
- Current funding from NCCIH to study the effects of massage on Cancerrelated fatigue
- Current funding from NIMH for the GPC collection and RAPID trials
- Current funding from NCCIH investigating the impact of N-3 fatty acids on inflammation in obese, inflamed subjects with MDD

<u>Collaborators</u>

David Mischoulon Andrew Nierenberg A Russell Poland E Lev Gertsik Catherine Bresee A Pamela Schettler S Becky Kinkead A Boadie Dunlop

Jeff Rakofsky Andy Miller Sherry Edwards Maurizio Fava Jennifer Felger Stefania Fava-Lemon Jisun So

YOU GOTTA KNOW THE TERRITORY!

Professor Henry Hill, "The Music Man"

() emoryhealthcare.org/brainhealth

It is important to remember

 Many of the medications commonly prescribed today were initially purified from plant extracts or fungi

What percent of pharmaceuticals manufactured in China are "traditional" natural products?

10% 27% 36% 56% 72%

• The current answer is 36%; Thirty-six percent of all pharmaceuticals manufactured in China are derived from natural products identified by traditional medicine practitioners.

"Lost in Translation 1"

Many of the natural products on the US market are part of the other healing traditions:

TRADITONAL:

Chinese Medicine Tibetan Medicine Hmong Medicine Mongolian Medicine Cunanderos/Yerberos Ayurveda Medicine

() emoryhealthcare.org/brainhealth

Differences between 'traditional medicine' and allopathic medicine

TRADITIONAL	<u>ALLOPATHIC</u>
Holistic Approach	Treatment focuses on a specific target
Individualized treatment based on "pattern differences"	Standardized Treatment
Practice based on traditions, clinical experience and individual observations	Practice and use of medications based on FDA guidelines, practice guidelines
Subjective Outcome Assessment of individuals	Standardized and validated target specific outcomes

Some of the challenges

"SQUARE PEG in a ROUND HOLE PHENOMENA"

Natural products are:

- Used for very different constellations of signs and symptoms in native cultures
- We in the US are employing them to treat our definition of disorders

What you see <u>may be</u> what you get

Unsubstantiated Claims of Benefit

Minimal GPC/GM Standards

2/3 of St. John's wort compounds contained no St. John's wort

Rate of deterioration of compounds are not known or standardized.

The dosage and formulation may vary between batches

"Natural may not be safe"

- Products may not be natural
- There may be many unforeseen interactions
 - Pharmacokinetic
 - Pharmacodynamic

Kava (Piper Methysticum)

- Anxiolytic, anticonvulsant, and muscle relaxant (kavapyrones)
- More than 12 studies, mostly RCTs
- Similar efficacy to venlafaxine, buspirone, opipramol (sigma antagonist)
- Effective for mild anxiety, not for panic attacks (Sarris et al, 2011)
- Antidepressant effect? (Sarris et al, 2009)

Kava: Adverse Effects

- 78 cases of severe kavarelated liver toxicity
- 36 cases of hepatitis; cirrhosis
- 11 cases of liver failure requiring transplant
- 4 deaths

Effects of herbs on drug-metabolizing enzymes and transporters

Herbs	In Vitro	Animal	Clinical	
Goldenseal (Hydrastis canadensis)	\downarrow CYP2C9, 2C19, 3A4 and 2D6		↓CYPD26 and 3A4/5	
Green Tea (Camellia sinensis)	\downarrow CYP2C9, 2D6, and 3A4		↓СҮРЗА4	
Milk Thistle (Sylibum marianum)	↓ CYP3A4, 2C9, 2E1, 2D6, 2C19, 1A2 and 2A6, P-gp, UGT1A1	↓CYP3A, 2C9 and P-gp	↑CYP3A4 and P-gp; ↓CYP2C9 and P-gp	
St. John's Wort (Hypericum perforatum)	↑CYP3A4, 2C9 and P-gp		个CYP3A4, OAT and P- gp	

Hu M, Fan L, Hong-Hao Z and Tomlinson B. *Theranostics meets traditional Chinese medicine: rational prediction of drug-herb interactions*, Expert Rev. Mol Diagn 12(8), 815-830 (2012)

() emoryhealthcare.org/brainhealth

Effect of genetic polymorphisms on herb-drug interactions

Herbs	Drugs	Effect of genetic polymorphisms on herb-drug interaction	Effect of genetic polymorphisms on the activity/protein/mRNA levels of the drug- metabolizing enzymes and drug transporters	Ref
St. John's wort	Gliclazide	Treatment of St. John's wort significantly increased the apparent clearance of gliclazide which was independent of CYP2C9 genotype	Reduced with the variant allele	[166]
	Mephenytoin	St. John's wort treatment significantly increased phenytoin clearance in CYP2C19 extensive metabolizers but not in PMs (*2,*3)	Reduced with the variant allele	[167]
	Nifedipine	After administration of St. John's wort, the AUC 0- ∞ of nifedipine and dehydronifedipine decreased by 42.4 and 20.2% in PXR H1/H2; 47.9 and 33.0% in H2/H2; whereas for the H1/H1 the AUC 0- ∞ of nifedipine decreased 29.0%, but the AUC 0- ∞ of dehydronifedipine increased by 106.7%.	Reduced basal transcriptional activity, but stronger induced transcriptional activity on CYP3A4 with H1/H1 compared with H1/H2 and H2/H2	[168]
	Omeprazole	St. John's wort decreased the plasma concentrations of omeprazole in a CYP2C19 genotype-dependent manner	Reduced with the variant allele	[169]

AUC - Area under the curve; CVP- Cytochrome P450; INR - International normalized ratio; PK - Pharmacokinetic; PM - poor metabolizer; PXR - Pregnane X receptor

Hu M, Fan L, Hong-Hao Z and Tomlinson B. Theranostics meets traditional Chinese medicine: rational prediction of drug-herb interactions. Expert Rev. Mol Diagn 12(98) 815-830 (2012)

The Opportunities

The Example of Major Depressive Disorder

CANMAT recommendations for natural products

Intervention	Indication	Recommendation	Evidence	Monotherapy or Adjunctive Therapy
St. John's wort	Mild to moderate MDD Moderate to severe MDD	First Line Second Line	Level 1 Level 2	Monotherapy Adjunctive
Omega-3	Mild to moderate MDD Moderate to severe MDD	Second line Second line	Level 1 Level 2	Monotherapy or adjunctive Adjunctive
SAM-e	Mild to moderate MDD Moderate to severe MDD	Second line Second line	Level 1 Level 2	Adjunctive Adjunctive
Acetyl-L-carnitine	Mild to moderate MDD	Third line	Level 2	Monotherapy
Crocus sativus (saffron)	Mild to moderate MDD	Third line	Level 2	Monotherapy or adjunctive
DHEA	Mild to moderate MDD	Third Line	Level 2	Monotherapy
Folate	Mild to moderate MDD	Third Line	Level 2	Adjunctive
Lavandula (Lavender)	Mild to moderate MDD	Third Line	Level 3	Adjunctive
Inosital	Mild to moderate MDD	Not recommended	Level 2	
Tryptophan	Mild to moderate MDD	Not recommended	Level 2	
Rhodiala rosea (roseroot)	Mild to moderate MDD	Not recommended	Insufficient evidence	

DHEA – dehydroepiandrosterone; MDD – major depressive disorder; SAM-e – S-adenosyl-L-methionine

Ravindran AV, Balneaves LG, Faulkner G et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of

Adults with Major Depressive Disorder: Section 5. Complementary and Alternative Medicine Treatments, La Revue Canadienne de Psychiatrie 61(9) 581

Inflammation: A Common Mechanism of Disease - Insight of the Decade (Science, 2010)

Demograp	hic Characteristics		EPA-	DHA-				
			Enriched	Enriched	Placebo	Sig	nifica	nce
Subjects w	vith All 5		(N = 52)	(N = 51)	(N = 52)			
Biomarker	s at Baseline							
Age ^a		Mean (sd) [Range] (N)	46.7 (11.9) [21 - 73] (50)	45.9(14.2) [23 - 70] (49)	45.6(12.0) [22 - 69] (49)	F 0.11	df 2, 145	P 0.900
Study	Cedars-Sinai	N (%)	32 (61.5)	30 (58.8)	32 (61.5)	x ²	df	P
Site	MGH	N (%)	20 (38.5)	21 (41.2)	20 (38.5)	0.11	2	0.948
Gender	Female	N (%)	33 (63.5)	28 (54.9)	30 (57.7)	x ²	df	P
	Male	N (%)	19 (36.5)	23 (45.1)	22 (42.3)	0.81	2	0.666
Race	Caucasian	N (%)	37 (71.2)	33 (67.4)	34 (65.4)	x ²	df	P
	African American	N (%)	10 (19.2)	8 (15.7)	11 (21.2)	0.59 ^t	2	0.745
	Other	N (%)	3 (5.8)	5 (9.8)	5 (9.6)	(Ca	ucasiai	n vs.
	Prefer Not to Say	N (%)	2 (3.8)	5 (9.8)	2 (3.8)	A	II Othe	rs)
Ethnicity ^a	Hispanic	N (%)	8 (16.0)	8 (16.0)	7 (14.3)	x ²	df	P
	Non-Hispanic	N (%)	42 (84.0)	42 (84.0)	42 (85.7)	0.07	2	0.964
Education ^a	High School or Less	N (%)	16 (31.4)	13 (26.0)	10 (21.3)	x ²	df	P
	Some College or More	N (%)	35 (68.6)	37 (74.0)	37 (78.7)	1.29	2	0.525

a. Information is missing for some subjects.

b. Categories were combined to avoid invalid x^2 due to cells with expected count < 5.

Change in HAMD-17 Total Score from Baseline to Treatment Week 8 by Number of High Inflammatory Markers^a.

Inflammatory Group Based on Number of	Least-Square Means (se) of Change at Treatment Week 8			Significance of Treatment-by- Time	Standardized Treatment Effect Size at Treatment Week 8 ^b		
High Inflammatory Markers	EPA LS-Mean (se) [N]	DHA LS-Mean (se) [N]	Placebo LS-Mean (se) [N]	Interaction F df (P-Value)	EPA vs. PLA	DHA vs. PLA	EPA vs. DHA
4 or 5 High (N=21)	-11.14 (1.79) [10]	-4.90 (2.17) [7]	-5.02 (2.52) [4]	0.94 2, 79.8 (P=0.396)	- 1.11	+ 0.02	- 1.10
2 or 3 High (N=38)	-12.38 (1.47) [13]	-11.52 (1.35) [13]	-9.43 (1.35) [12]	0.70 2, 135 (P=0.498)	- 0.59	- 0.44	- 0.17
1 High (N=50)	-11.76 (1.28) [13]	-7.31 (1.11) [17]	-10.80 (1.10) [20]	1.20 2, 177 (P=0.303)	- 0.20	+ 0.73	- 0.97
0 High (N=46)	-7.78 (0.85) [16]	-11.65 (0.96) [14]	-10.85 (0.83) [16]	4.09 2, 215 (P=0.018)	+ 0.91	- 0.23	+ 1.11

a. MMRM analysis of N=155 evaluable subjects with all five biomarkers at baseline.

a. INIVISIVI analysis of N=155 evaluable subjects with all five biomarkers at baseline. 21
b. By Cohen's d effect size = (difference between LS-Mean change) / pooled sd for each pair of treatments (sd

MDD with High Inflammation: A Personalized Approach: an UG3

Mark H. Rapaport, MD, Maurizio Fava, MD, David Mischoulon, MD, PhD, Boadie Dunlop, MD, Jennifer Felger, PhD, Becky Kinkead, PhD, Andrew Miller, MD, Jeffrey Rakofsky, MD, Pamela Schettler, PhD, Thomas Ziegler, MD, Andrew Nierenberg, MD, Jonathan Alpert, PhD, Christina Dording, MD, Stephania Fava, PhD

Flow of Randomized Subjects by Treatment Group

Subject Status	1g/day	2g/day	4g/day	Placebo	Total
Randomized (n)	15	15	16	15	61
Evaluable (n) % of Those Randomized	15 100.0%	14 93.3%	16 100.0%	12 80.0%	57 93.4%
Analyzable Data to Visit 9 (Treatment Week 12) (n)	14	11	13	10	48
% of Those Randomized	93.3%	73.3%	81.2%	66.7%	78.7%

IDS-C30 Response (>50% Reduction in Total Score) (n=48 Completers)

Tx Week	1g/day n/n (%)	2g/day n/n (%)	4g/day n/n (%)	Placebo n/n (%)	EPA Dose vs. Placebo	Risk Ratio: EPA Dose vs. Placebo	Odds Ratio: EPA Dose vs. Placebo
Week 8	3/13 (23.1)	4/11 (36.4)	8/13 (61.5)	5/10 (50.0)	1g vs. Pla 2g vs. Pla 4g vs. Pla	0.461 0.727 1.231	0.300 0.571 1.600
Week 12	5/14 (35.7)	4/11 (36.4)	9/13 (69.2)	4/10 (40.0)	1g vs. Pla 2g vs. Pla 4g vs. Pla	0.893 0.909 1.731	0.833 0.857 <mark>3.375</mark>
Both Tx Week 8 and 12	3/13 (23.1) Includes all 3 responders at Wk 8	4/11 (36.4) Includes all 4 responders at Wk 8	6/13 (46.2) Includes 6 of 8 responders at Wk 8	2/10 (20.0) Includes 2 of 5 responders at Wk 8	1g vs. Pla 2g vs. Pla 4g vs. Pla	1.154 1.818 2.308	1.200 2.286 3.429

Correlation of % Change in IDS-C30 with % Change Plasma hs-CRP (n=48 Completers)

Percent Change from Baseline	Spearman Rank-Order Correlation with Percent Change in IDS-C30 at Treatment Week 12 (Correlation, p=value, and n)					
	1g/day	2g/day	4g/day	Placebo		
Plasma hs-CRP	-0.129 p=0.694 13	-0.091 p=0.790 n=11	0.753 p=0.003 13	0.164 p=0.652 10		

Lipid mediators in the acute inflammatory response, resolution and other outcomes

Serhan (2014) Nature 510(7503): 92-101. PMCID: PMC4263681.

SPM biosynthetic pathways

EPA-derived HEPEs

EPA-derived RvEs

AA-derived SPM biosynthetic pathways

AA-derived SPM biosynthetic pathways

Our work with natural products suggest

There needs to be rigorous investigation of:

- a. The composition of the compound being tested
 - a. What component of the plant?
 - b. Purity of the formulation
 - c. Stability of the formulation
- b. The question being investigated
 - a. Is it too broad to be informative?
 - b. Are the correct measures being employed?
 - c. Over-inclusive analysis plans
- c. The toxicity of the compound
 - a. Natural is not necessarily safe
 - b. The unexpected happens!
- d. The mechanism of action being evaluated
 - a. You have to "place your bet" to design the appropriate experiment
- e. The composition of the study population
 - a. Heterogeneity may obscure an effect
- f. Unexpected findings

Where research needs to go

Modified from work by Hu M, Fan L, Hong-Hao Z and Tomlinson B. *Theranostics meets traditional Chinese medicine: rational prediction of drug-herb interaction*. Exper Rev Mol Diagn 12(8), 815-830 (2012)

 \bigcirc emoryhealthcare.org/brainhealth

Resources for reviewing integrative medicine therapies

- Summaries.cochrane.org The Cochrane Collaboration is an international, independent, notfor-profit organization
- NCCIH.nih.gov The National Center for Complementary and Integrative Health
- <u>www.consumerlab.com</u> independent test results and information to help consumers and healthcare professionals identify the best quality health and nutrition products
- <u>www.umm.edu/health/medical/altmed</u> University of Maryland free
- <u>http://naturaldatabase.therapeuticresearch.com</u> Evidence based science on integrated, complementary and alternative therapies
- <u>https://www.healthwavehq.com</u> Fullscript allows clinicians to "write a prescription" for preferred supplements